A BRIEF INTRODUCTION TO SOBOLEV SPACES

In this note, we limit ourselves to the one dimensional case, since the theory for higher
dimensions involves several complications. Henceforth, we use m to denote the Lebesgue
measure on R and L? to denote the Banach space L (R, m) for any p € [1,e0].

Weak derivatives. Let f: R — R be a locally integrable function, namely a measurable function
whose restriction to any compact interval is integrable. A weak derivative of f is a measurable
function g such that

/f(p/dm:_/g(pdm fOI'aH(Pecgcoo(R)?

where %°(R) denotes the space of infinitely differentiable functions on R with compact support.

Exercise 1. (1) Show that, if f is differentiable, then its derivative f’ is a weak derivative.
(2) Show that the sign function
1 if x>0,
sign(x) =<0 if x=0,
-1 if x<0,

is a weak derivative of f(x) = |x|.

Lemma 2. If g and h are weak derivatives of a locally integrable function f, then g = h almost
everywhere.

Proof. Let g and h be weak derivatives of f. From the definition, we deduce that

/(g—h)-(pdm:() forall ¢ € €.°(R).

Let [a, D] be any bounded interval, and let @, be a mollifier as defined in the previous set of notes.
Recall that we showed that ¥, ;) * @ is in %:°(R) and it converges to Xa,p] almost everywhere
as € — 0. By the Dominated Convergence Theorem,

0= [ (g =) (tasy * 0e)am = Tim [ (g =) (o * @e)dm = [ (g =) 2o am.

The fact that the integral of g — & over all bounded intervals is zero implies that g = & almost
everywhere. O

As usual, we identify functions that are equal almost everywhere, hence, by the previous
lemma, we denote by D’ f the unique j-th weak derivative of f, if it exists.

Sobolev spaces.
Definition 3. Let p € [1,00] and let k > 0. The Sobolev space WXP = WhP(R) C LP is the space
WhP={feLP : DIfeLP forall j <k},
equipped with the norm .
fllwer = Y 1D fp.
j=0
We now show that WX is a Banach space.
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Proposition 4. For any p € [1,] and k > 0, the space W*P is complete.

Proof. Let (f,), C W5P be a Cauchy sequence. By definition of the norm, for any j < k, the
sequence (D’f,), is a Cauchy sequence in LP. Since the latter is a Banach space, (D/f;),
converges, and let us call g; € L? the limit. To conclude, it suffices to prove that D/ g0 =g/,
which implies that the limit gq of the sequence (f;), is in W*>.

Fix j <k. For any ¢ € ¢.°(R), we have

[ s0-Digam=lim [ f,-Digam = (=1 lim [Dif,-pdm=(-1)/ [g;-gam.
n—o0 n—oo
This shows that g; is the j-th weak derivative of go and finishes the proof. 0

It is customary to write H* for W%2. The space H* is a Hilbert space with the inner product
k . . k . .
(.8 = Y (D'f.DIg) = Y [ D/f-Dlgam,
j=0 j=0

or with D_Jg replacing D/g above, if the functions are complex-valued.

Sobolev embeddings. Let o > 0. If « is an integer, €% = ¢'*(R) denotes the space of a-times
differentiable functions. Assume now that o is not an integer, and call £ > 0 and 8 € (0,1) its
integer and fractional part respectively. We define €% to be the space of /-times differentiable
functions f whose ¢-th derivative D’ f is Holder continuous of exponent 3, and we equip it with
the norm

¢ Y
o = Ul +sp 2TD =D IO
XF£y ]x—y\

The second summand in the right-hand side above is called the B-Holder constant of D' f.

1/

Theorem 5 (Sobolev Embedding Theorem). For any p € [1,00) and k > 0, there is a continuous
injection
1
1 WhP s g% where o=k——.
p

The Sobolev Embedding Theorem follows is a consequence of the following inequality.

Lemma 6 (Morrey’s Inequality). Let f € €} (R). Then || f||lga < 2||f|lwip, where ot =1— %.

Proof. Let x < y be fixed. Then, since f(y) — f(x) = 7 f’dm, Holder’s Inequality yields

fI < |f(X)!+/|f'| Ay A S UL+ My - 12y e = 1LF )+l - 6 —2)%

Averaging over [y — 1,y + 1] with respect to x and using again Holder’s Inequality, we deduce
1

1 +1 1 +
PO < 5 [ I (=0 de < 5 [ D]+ s

-
<227+ 1) < WAy + 17 1y

which implies || flle < || flw1.0-
Similarly,

£0) = @I < [ 17 gy dm < 11F - (0-2)%,

which implies that the o-Holder constant of f is at most || f'||,. This completes the proof. [
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Proof of the Sobolev Embedding Theorem. Let us consider the case k =1, and let &« = 1 — %
Morrey’s Inequality implies that the inclusion

11 €1(R) — €“

is continuous, if we equip the domain with the norm || - ||y1.,. Since € (R) is dense in W7, the
map 1 extends to a linear and continous injection between W' and €“.

The general case follows similarly by considering D/ f instead of f for all j < k. The details
are left as an exercise to the reader. U



