
A BRIEF INTRODUCTION TO SOBOLEV SPACES

In this note, we limit ourselves to the one dimensional case, since the theory for higher
dimensions involves several complications. Henceforth, we use m to denote the Lebesgue
measure on R and Lp to denote the Banach space Lp(R,m) for any p ∈ [1,∞].

Weak derivatives. Let f : R→R be a locally integrable function, namely a measurable function
whose restriction to any compact interval is integrable. A weak derivative of f is a measurable
function g such that ∫

f ·ϕ ′ dm =−
∫

g ·ϕ dm for all ϕ ∈ C ∞
c (R),

where C ∞
c (R) denotes the space of infinitely differentiable functions on R with compact support.

Exercise 1. (1) Show that, if f is differentiable, then its derivative f ′ is a weak derivative.
(2) Show that the sign function

sign(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0,

is a weak derivative of f (x) = |x|.

Lemma 2. If g and h are weak derivatives of a locally integrable function f , then g = h almost
everywhere.

Proof. Let g and h be weak derivatives of f . From the definition, we deduce that∫
(g−h) ·ϕ dm = 0 for all ϕ ∈ C ∞

c (R).

Let [a,b] be any bounded interval, and let ϕε be a mollifier as defined in the previous set of notes.
Recall that we showed that χ[a,b] ∗ϕε is in C ∞

c (R) and it converges to χ[a,b] almost everywhere
as ε → 0. By the Dominated Convergence Theorem,

0 =
∫
(g−h) · (χ[a,b] ∗ϕε)dm = lim

ε→0

∫
(g−h) · (χ[a,b] ∗ϕε)dm =

∫
(g−h) ·χ[a,b] dm.

The fact that the integral of g−h over all bounded intervals is zero implies that g = h almost
everywhere. �

As usual, we identify functions that are equal almost everywhere, hence, by the previous
lemma, we denote by D j f the unique j-th weak derivative of f , if it exists.

Sobolev spaces.

Definition 3. Let p ∈ [1,∞] and let k≥ 0. The Sobolev space W k,p =W k,p(R)⊂ Lp is the space

W k,p = { f ∈ Lp : D j f ∈ Lp for all j ≤ k},
equipped with the norm

‖ f‖W k,p =
k

∑
j=0
‖D j f‖p.

We now show that W k,p is a Banach space.
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Proposition 4. For any p ∈ [1,∞] and k ≥ 0, the space W k,p is complete.

Proof. Let ( fn)n ⊂W k,p be a Cauchy sequence. By definition of the norm, for any j ≤ k, the
sequence (D j fn)n is a Cauchy sequence in Lp. Since the latter is a Banach space, (D j fn)n
converges, and let us call g j ∈ Lp the limit. To conclude, it suffices to prove that D jg0 = g j,
which implies that the limit g0 of the sequence ( fn)n is in W k,p.

Fix j ≤ k. For any ϕ ∈ C ∞
c (R), we have∫

g0 ·D j
ϕ dm = lim

n→∞

∫
fn ·D j

ϕ dm = (−1) j lim
n→∞

∫
D j fn ·ϕ dm = (−1) j

∫
g j ·ϕ dm.

This shows that g j is the j-th weak derivative of g0 and finishes the proof. �

It is customary to write Hk for W k,2. The space Hk is a Hilbert space with the inner product

〈 f ,g〉Hk =
k

∑
j=0
〈D j f ,D jg〉L2 =

k

∑
j=0

∫
D j f ·D jgdm,

or with D jg replacing D jg above, if the functions are complex-valued.

Sobolev embeddings. Let α ≥ 0. If α is an integer, C α = C α(R) denotes the space of α-times
differentiable functions. Assume now that α is not an integer, and call `≥ 0 and β ∈ (0,1) its
integer and fractional part respectively. We define C α to be the space of `-times differentiable
functions f whose `-th derivative D` f is Hölder continuous of exponent β , and we equip it with
the norm

‖ f‖C α = ‖ f‖C ` + sup
x 6=y

|D` f (x)−D` f (y)|
|x− y|β

.

The second summand in the right-hand side above is called the β -Hölder constant of D` f .

Theorem 5 (Sobolev Embedding Theorem). For any p ∈ [1,∞) and k ≥ 0, there is a continuous
injection

ı : W k,p ↪−→ C α , where α = k− 1
p
.

The Sobolev Embedding Theorem follows is a consequence of the following inequality.

Lemma 6 (Morrey’s Inequality). Let f ∈ C 1
c (R). Then ‖ f‖C α ≤ 2‖ f‖W 1,p , where α = 1− 1

p .

Proof. Let x < y be fixed. Then, since f (y)− f (x) =
∫ y

x f ′ dm, Hölder’s Inequality yields

| f (y)| ≤ | f (x)|+
∫
| f ′| ·χ[x,y] dm≤ | f (x)|+‖ f ′‖p · ‖χ[x,y]‖1/α = | f (x)|+‖ f ′‖p · (y− x)α .

Averaging over [y−1,y+1] with respect to x and using again Hölder’s Inequality, we deduce

| f (y)| ≤ 1
2

∫ y+1

y−1
| f (x)|+‖ f ′‖p · (y− x)1/α dx≤ 1

2

∫ y+1

y−1
| f (x)|+‖ f ′‖p dx

≤ 2α−1(‖ f‖p +‖ f ′‖p)≤ ‖ f‖p +‖ f ′‖p,

which implies ‖ f‖∞ ≤ ‖ f‖W 1,p .
Similarly,

| f (y)− f (x)| ≤
∫
| f ′| ·χ[x,y] dm≤ ‖ f ′‖p · (y− x)α ,

which implies that the α-Hölder constant of f is at most ‖ f ′‖p. This completes the proof. �
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Proof of the Sobolev Embedding Theorem. Let us consider the case k = 1, and let α = 1− 1
p .

Morrey’s Inequality implies that the inclusion

ı : C 1
c (R) ↪−→ C α

is continuous, if we equip the domain with the norm ‖ · ‖W 1,p . Since C 1
c (R) is dense in W 1,p, the

map ı extends to a linear and continous injection between W 1,p and C α .
The general case follows similarly by considering D j f instead of f for all j < k. The details

are left as an exercise to the reader. �


